Hydrogels for osteochondral repair based on photocrosslinkable carbamate dendrimers.

نویسندگان

  • Lovorka Degoricija
  • Prashant N Bansal
  • Serge H M Söntjens
  • Neel S Joshi
  • Masaya Takahashi
  • Brian Snyder
  • Mark W Grinstaff
چکیده

First generation, photocrosslinkable dendrimers consisting of natural metabolites (i.e., succinic acid, glycerol, and beta-alanine) and nonimmunogenic poly(ethylene glycol) (PEG) were synthesized divergently in high yields using ester and carbamate forming reactions. Aqueous solutions of these dendrimers were photocrosslinked with an eosin-based photoinitiator to afford hydrogels. The hydrogels displayed a range of mechanical properties based on their structure, generation size, and concentration in solution. All of the hydrogels showed minimal swelling characteristics. The dendrimer solutions were then photocrosslinked in situ in an ex vivo rabbit osteochondral defect (3 mm diameter and 10 mm depth), and the resulting hydrogels were subjected to physiologically relevant dynamic loads. Magnetic resonance imaging (MRI) showed the hydrogels to be fixated in the defect site after the repetitive loading regimen. The ([G1]-PGLBA-MA) 2-PEG hydrogel was chosen for the 6 month pilot in vivo rabbit study because this hydrogel scaffold could be prepared at low polymer weight (10 wt %) and possessed the largest compressive modulus of the 10% formulations, a low swelling ratio, and contained carbamate linkages, which are more hydrolytically stable than the ester linkages. The hydrogel-treated osteochondral defects showed good attachment in the defect site and histological analysis showed the presence of collagen II and glycosaminoglycans (GAGs) in the treated defects. By contrast, the contralateral unfilled defects showed poor healing and negligible GAG or collagen II production. Good mechanical properties, low swelling, good attachment to the defect site, and positive in vivo results illustrate the potential of these dendrimer-based hydrogels as scaffolds for osteochondral defect repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair.

The implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect of spatial chondrocyte distribution on the reparative process. To reduce animal experiments, an ...

متن کامل

Synthesis of biodegradable photocrosslinkable polymers for stereolithography-based 3D fabrication of tissue engineering scaffolds and hydrogels

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Laura Elomaa Name of the doctoral dissertation Synthesis of biodegradable photocrosslinkable polymers for stereolithography-based 3D fabrication of tissue engineering scaffolds and hydrogels Publisher School of Chemical Technology Unit Department of Biotechnology and Chemical Technology Series Aalto University publication seri...

متن کامل

Site-isolated, intermolecularly photocrosslinkable and patternable dendritic quinacridones.

Quinacridone-cored dendrimers with photocrosslinkable cinnamate moieties on the periphery can be patterned down to 5 micron features while retaining luminescence.

متن کامل

Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

UNLABELLED Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autolo...

متن کامل

Advances in skeletal tissue engineering with hydrogels.

OBJECTIVES Tissue engineering has the potential to make a significant impact on improving tissue repair in the craniofacial system. The general strategy for tissue engineering includes seeding cells on a biomaterial scaffold. The number of scaffold and cell choices for tissue engineering systems is continually increasing and will be reviewed. DESIGN Multilayered hydrogel systems were develope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 9 10  شماره 

صفحات  -

تاریخ انتشار 2008